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NUMERICAL PREDICTION OF TURBULENT BUBBLY
TWO-PHASE FLOW IN A ROTATING COMPLICATED

DUCT

JING-CHUN WU* AND KIYOSHI MINEMURA
School of Informatics and Sciences, Nagoya Uni6ersity, Nagoya 464-01, Japan

SUMMARY

A fully three-dimensional numerical procedure based on the two-fluid model in a general curvilinear
co-ordinate system is proposed for the prediction of developing turbulent bubbly two-phase flow in a
rotating complicated duct. A Coriolis-modified turbulence model is extended to two-phase flows to
account for the rotational effect on the lateral phase distribution. The governing equations are solved
using a finite volume technique with a non-staggered variable arrangement. Comparisons of the
predictions with measured pressure and void fractions show good agreement. Copyright © 1999 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In view of recent emphases on the safety analysis of nuclear reactors and increased require-
ments for the offshore oil field developments, it is imperative to understand the mechanisms of
gas–liquid two-phase flow in centrifugal pumps, and to establish numerical methods to
accurately predict the flow characteristics. For this purpose, Minemura and Uchiyama [1]
performed a three-dimensional computation for the air–water two-phase flow in a centrifugal
pump impeller. The flow was solved with a finite element method on the basis of a bubbly flow
model. Their predictions reasonably captured the flow trends as observed by experiment [2],
but with considerable deviations from the data, due to the neglect of the viscosity. Recently,
Clark and Issa [3] employed a model proposed by Gosman et al. [4] to predict the three-dimen-
sional turbulent bubbly flow in the same centrifugal pump. Their results, however, still showed
remarkable differences with the experimental data. Therefore, the numerical simulation of the
two-phase flows should be investigated preliminarily for simpler problems due to the complex-
ity of the rotating impeller passage. With the intention of better understanding flow mecha-
nisms, especially the rotational effects on the two-phase flow behavior, air–water two-phase
flow in a rotating square-sectioned duct, chosen as a simple model of an impeller passage, was
experimentally investigated by Patel and Runstadler [5] and Minemura et al. [6]. The flow was
then numerically analyzed by Uchiyama et al. [7] using a two-dimensional bubbly flow model
with Reynolds stress based on the mixing length theory. In the authors previous studies,
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three-dimensional numerical predictions were performed for the same duct based on the
two-fluid model in a Cartesian co-ordinate system [8], and effects of turbulence on the phase
distribution were investigated by using several kinds of turbulence models [9]. Although these
computations reasonably predicted the flow trends, the simplification of the computational
domain probably contributed greatly to the considerable deviations of the predictions from the
measurement.

For the bubbly two-phase flows, turbulence modeling is the key to accurately predicting the
phase distribution. In recent years, some advances have been made in modeling turbulence
based on the two-fluid model [10–13]. However, most of the numerical analyses have been
concerned only with fully developed flows in stationary circular ducts. And to date, there have
been few works on two-phase flow in a rotating non-circular duct despite its importance in
practical applications. On the other hand, almost all the existing numerical simulations are
confined to a Cartesian co-ordinate system and predictions for the two-phase flow in complex
geometries are virtually limited. It is, therefore, the objective of this study to advance the
state-of-the-art in rotational and multidimensional two-phase flows in arbitrary geometries. A
fully three-dimensional numerical procedure based on the two-fluid model in a general
curvilinear co-ordinate system is proposed in this paper. Turbulence is modeled using a
Coriolis-modified turbulence model [14] to account for the rotational effects. A finite volume
technique is employed for the solution of the governing equations, with a non-staggered
variable arrangement. In order to avoid decoupling of the velocity and pressure fields, the
pressure-weighted interpolation method (PWIM) proposed by Rhie and Chow [15] and then
improved by Majumdar [16], is used. A numerical procedure based on the inter-phase slip
algorithm (IPSA) proposed by Spalding [17] is developed in this paper. The method is applied
to the developing turbulent bubbly two-phase flow in a rotating complicated duct, experimen-
tally studied by Minemura et al. [6], which consists of a square-sectioned duct with both ends
connected to a circular pipe through a bend. The results obtained herein show fair agreement
with the limited data available on this rotating duct.

2. MATHEMATICAL MODELS

2.1. Two-fluid model

For isothermal and incompressible gas–liquid flow in a rotating Cartesian co-ordinate
system, the equations of continuity and momentum based on the two-fluid model can be
written as:

(akrk

(t
+9 · (akrkuk)=0 (k=g, l), (1)

((akrkuk)
(t

+9 · (akrkukuk)

= −ak9pk+9 ·aktk+9 ·aktk
t +akrkg−akrk [V× (V×r)+2V×uk ]+Mk, (2)

where the subscript k denotes liquid (l) or gas phase (g).
It is now assumed that the surface tensions are negligible, which implies that the pressure

within each phase is the same, i.e. pk=p. Under this assumption, the interfacial force Mk is
reduced to Ml= −Mg. The interfacial force can be decomposed into several terms such as
drag force Md, virtual mass force Mvm and lift force M l. For the gas phase, we have:
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Mg=Mg
d+Mg

vm+Mg
l . (3)

The interfacial drag force for spherical bubbles with the diameter of Db is modeled as:

Mg
d=Fd(ul−ug) (4)

and Fd is given by:

Fd= (3ag/4Db)rlCD�ul−ug�. (5)

Here, the drag coefficient CD is obtained via the empirical correlations proposed by Ishii and
Zuber [18]:

CD= (24/Reb)(1+0.1Reb
0.75), (6)

where Reb is the bubble Reynolds number.
Drew and Lahey [19] have derived theoretical models for the lift and virtual mass forces as

expressed by:

Mg
l =CLagrl(ul−ug)× (9×ul), (7)

Mg
vm=Cvmagrl

�Dlul

Dt
−

Dgug

Dt
�

, (8)

where CL is the lift coefficient, and Cvm the virtual mass coefficient. According to Drew and
Lahey [19], the combination of virtual mass and lift forces is objective only if CL=Cvm. In this
study, the typical value of 0.5 is taken for the both coefficients.

2.2. Turbulence model

The standard k–e model was first employed by Lee et al. [10] for the bubbly flow in vertical
pipes. Lopez de Bertodano and his co-workers [11] applied a t–e model to the bubbly pipe
flows to account for the anisotropy of turbulence, which was shown to have a substantial effect
on the phase distribution by their studies. They further adapted the k–e model [12] to the
bubbly flows by assuming that the shear-induced and bubble-induced turbulence is linearly
superposed. The assumption of linear superposition is based on the experimental evidence of
Lance and Bataille [20]. However, many other experimental results [21,22] imply otherwise.
Recently, Gosman et al. [4] and Issa and Oliveira [23] have extended the single-phase k–e

model to a formation to account for the phase fraction fluctuations. Although all these models
have been claimed to yield results in good agreement with Serizawa’s [21] or Wang’s [24] data
for the upward and downward bubbly flows in a vertical pipe, the authors’ experience in the
rotating duct [9] has shown that they may give quite a different phase distribution. In
particular, the sources of turbulence kinetic energy and dissipation related to the phase fraction
fluctuations seem to excessively underpredict the void fraction. A previous study [9] also shows
that the Reynolds stress anisotropies have inconsiderable effects on the pressure, axial and
secondary flows, except for some effects on the void fractions. Therefore, the single-phase
standard k–e model with rotational modification, as proposed by Howard [14], is extended to
the two-phase flow in this study. For the bubbly two-phase flow, the Reynolds stresses of the
gas-phase are small in comparison with those of the liquid-phase, so they can be neglected. The
Coriolis-modified turbulence model for liquid-phase takes the form (for convenience the
subscript l is omitted):

(

(t
(ark)+

(

(xi

(aruik)=
(

(xi

�
a
�

m+
m t

sk

� (k
(xi

n
+aG−are+aGc, (9)
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where the turbulence kinetic energy generation rate G, is:

G=m t (ui

(xj

�(ui

(xj

+
(uj

(xi

�
(11)

and the turbulent viscosity m t is given by:

m t=Cmrk2/e. (12)

Gc in Equations (9) and (10) is a Coriolis modification proposed by Howard et al. [14], it takes
the form:

Gc=9Vm t (u
(y

. (13)

The constants in the k–e model are assigned the same values as normally used in single-phase
flow: Cm=0.09, sk=1.0, se=1.3, C1=1.44, C2=1.92.

2.3. Transformation of basic equations

The above conservation equations typically can be written in a Cartesian co-ordinate system
for the dependent variable fk (k=g, l) in the following form:

(

(t
(akrkfk)+

(

(xi

(akrkukifk)=
(

(xi

�
akGk

f
(fk

(xi

�
+Sk

f, (14)

where Gk
f is the effective diffusion coefficient and Sk

f the source term. When general curvilinear
co-ordinates jj ( j=1, 2, 3 for j, h, z) are introduced, Equation (14) changes according to the
general transformation jj=jj(x, y, z). The transformed equation can be expressed as follows
(for convenience the subscript k for gas- or liquid-phase is omitted):

(

(t
(arfJ)+

(

(jj

(arUjf)=
(

(jj

�
aGfJqjl

(f

(jl

�
+SfJ, (15)

where Uj ( j=1, 2, 3 for U, V, W) are the contravariant velocity components:
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J is the Jacobian of the transformation:

J=
((x, y, z)
((j, h, z)

=Ã
Æ

È

xj

xh

xz

yj

yh

yz

zj

zh

zz

Ã
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É
(17)

and qij is defined as

qij=
(ji

(xl

·
(jj

(xl

. (18)
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3. NUMERICAL ALGORITHM AND CALCULATING CONDITIONS

3.1. Discretization of the transport equations

A finite volume technique is employed for the solution of the governing equations with a
non-staggered variable arrangement. In order to stabilize a numerical solution and assure a
high numerical accuracy, the second-order upwind scheme as developed by Shyy et al. [25] and
Peric [26] is implemented in the calculation for the two-fluid model.

After discretizing the governing equations, the linearized conservation equations can be
written in the following conventional form:

apfp=%
nb

anbfnb+Sf, (19)

where a denotes the convection and diffusion contributions in linearized conservation equa-
tions, Sf is the corresponding total source term, and nb represents the neighboring points of
P as shown in Figure 1.

The discretized set of equations is solved iteratively and sequentially based on the SIMPLE
algorithm for single-phase flows, suitably extended to cater for two-phase flows. At the time
level tn+1, it is assumed that velocity components ui

k(n+1) of gas- or liquid-phase can be
approximated by ui

k * in the following form:

ap
kui

k *p =%
nb

anb
k u i

k *nb+Sui

k −ak(jxi
p*j+hxi

p*h+zxi
p*z )J+a0

kupi

k(n) (k=g, l), (20)

where a0
k=J(akrk+Cvmagrl)/dt, ap

k=�nb anb
k +a0

k and the superscript n denotes old time
level.

To satisfy the continuity equations, the velocity components ui
k(n+1) are then assumed to be

updated by the following relations:

ui
k(n+1)=ui

k *−
akJ
ap

k (jxi
p %j+hxi

p %h+zxi
p %z), (21)

where p % is the pressure correction that is related to the pressure pn+1 according to:

pn+1=p*+p %. (22)

Figure 1. Typical control volume.
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Subsequently, the correction forms for the contravariant velocities Ui (U, V, W) are obtained
by substituting Equation (21) into Equation (16):

Ui
k(n+1)=Ui

k *−
akJ2

ap
k qijp %jj

. (23)

It is noted that the terms qijp %jj
of Equation (23) for i" j are negligible if the grid is nearly

orthogonal. Neglecting these terms, Ui can be further simplified as:

Ui
k(n+1)=Ui

k *−Bi
kp %ji

, (24)

where

Bi
k=

akJ2

ap
k qii.

3.2. Pressue–6elocity coupling

In this study, the pressure correction equation is based on the sum of gas- and liquid-phase
continuity equations, each normalized by a reference phase density, as done by Issa and
Oliveira [23]. According to Equation (15), the transformed gas- and liquid-phase continuity
equations can be written as:

(

(t
(akrkJ)+

(

(j
(akrkUk)+

(

(h
(akrkVk)+

(

(z
(akrkWk)=0 (k=g, l). (25)

Therefore, the sum of gas- and liquid-phase continuity equations can be expressed by:

(

(j
(alUl)+

(

(h
(alVl)+

(

(z
(alWl)+

(

(j
(agUg)+

(

(h
(agVg)+

(

(z
(agWg)=0, (26)

where the time derivative terms vanish, since al+ag=1 holds at any time.
The pressure correction equation can be obtained by substituting Ui

k from Equation (24)
into Equation (26). In order to avoid decoupling of the velocity and pressure fields with the use
of non-staggered grids, the PWIM proposed by Rhie and Chow [15] and then improved by
Majumdar [16] is used in the present solution procedure to determine the convective velocities.
With the introduction of the PWIM, the east cell face contravariant velocity Ue (for
convenience, the superscript k for gas- or liquid-phase is omitted) for example, can now be
expressed as follows:

U e
n+1=U e*−Blp %j �e, (27)

where the overbar indicates linear interpolation, and

U e*=U e*+ (1−v)(U e
n−U e

n)+v(Blp*j �e−Blp*j �e)+v
��a0

ap

�
U e

n−
�a0

ap

�
Un)

e

n
, (28)

where v denotes the underrelaxation factor used for the solution of discretized momentum
equations. This expression can give a unique converged solution independent of the underre-
laxation factor [16]. The last two terms introduced into the formulation are similar to those
given by Issa and Oliveira [23], which also make it give a fully converged solution independent
of the time step dt.

Now, with the conception of PWIM, the pressure correction equation can be expressed in
the following form:
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app %=%
nb

anbp %nb+Sp, (29)

where

anb=anb
l +anb

g = (alBi
l+agBi

g)�e,w,n,s,t,b, (30)

Sp= %
k= l,g

{(akUk*)e− (akUk*)w+ (akVk*)n− (akVk*)s+ (akWk*)t− (akWk*)b}. (31)

Here, ak at the cell face always takes the upwinded values according to the sign of the
corresponding cell face contravariant velocities, for example:

(aU*)e=aP max[U e*, 0]−aE max[−U e*, 0]. (32)

3.3. Numerical procedure

The above sets of discretized equations for the two-fluid model are solved iteratively and
sequentially based on the ISPA proposed by Spalding [17]. The advancement in time is
adopted herein by a so-called ‘pseudo time marching’ technique proposed by Issa and Oliveira
[23]. The solution procedure can be summarized as follows:

1. Solve the momentum equations (20) to obtain the liquid- and gas-phase velocities, ui
l * and

ui
g *.

2. Solve the pressure correction equation (29), where the cell face contravariant velocities in
Sp are calculated using Equation (28), to obtain the pressure correction p %.

3. The pressure, velocities and contravariant velocities are updated according to Equations
(22), (21), (24) and (27) respectively.

4. k and e are solved for using Equation (19).
5. Solve the liquid- and gas-phase continuity equations (25) to obtain the updated phase

fractions ak.
6. The solution will be advanced in time and the iteration process (2)–(5) will be repeated

until the convergence is achieved.

3.4. Geometry and boundary conditions

The flow configuration shown in Figure 2 is a rotating complicated duct, where a
square-sectioned straight duct (width D=32 mm) is attached to the vertical circular pipe
(diameter D=32 mm) by a circular-sectioned 90° bend through a transition section at both
ends. The geometry is almost the same as the real configuration of the experimental study by
Minemura et al. [6]. A detailed description of the geometry and experimental apparatus can be
found in [6]. The computational mesh of 114×34×34 is used in the calculation as represen-
tatively shown in Figure 2.

Since the measurements by Minemura et al. are primarily confined to the horizontal center
plane of the square-sectioned duct, the flow conditions at both the inlet and outlet should be
specified. At the inlet, the phase fraction is assumed to be uniform. The axial velocities of both
phases are assumed to obey a 1/7-power law distribution. The averaged axial slip velocity
(wg−wl) is specified by a drift flux correlation proposed by Zuber and Findley [28] as in the
following:

wg−wl=
2 (sgDr/r l
2)1/4a l

n (n=0.5�1.0). (33)
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Figure 2. Flow configuration and computational mesh.

At the outlet boundary, zero streamwise gradients are imposed for all variables except
pressure for which a linear extrapolation is used. The logarithmic law of the wall has been
widely used in single-phase flows. Although there is a deficiency in the performance of the
logarithmic law of the wall for the problems involving rotation and curvature, a previous study
[29] has shown that the law of the wall can yield fairly good results for the single-phase flow
in curved rotating ducts when it is combined with the use of the Coriolis-modified turbulence
model as proposed by Howard et al. [14]. Various numerical studies have shown that it is also
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an effective and reasonable approximation [27] for two-phase flows. Thus, the law of the wall
for the solid surfaces is used in this study.

In this work predictions are performed for a Reynolds number (Re=rlubD/ml) of 25000 and
a Rossby number (Rw=VD/ub) of 0.24, with an averaged inlet void fraction of 0.032. The
bubble diameter Db is taken to be 2 mm according to the values of 1–2 mm observed by
Minemura et al. [6] during their experiments.

4. RESULTS OF SINGLE-PHASE LIQUID FLOW

To evaluate the validity of the present approach, computations are first performed for the
single-phase liquid flow with the above Reynolds and Rossby number. The flow evolution
through different cross sections is displayed in Figure 3 by the predicted secondary velocity
vectors and the corresponding streamwise velocity contours. At the station of u1=60° shown
in Figure 3(a), the lateral pressure gradient set up by the curvature of the first bend and
rotation of the duct, leads to the formation of a pair of asymmetric streamwise vortices. Such

Figure 3. Predicted secondary flow velocity and streamwise velocity contours for a0=0.
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Figure 4. Streamwise wall pressures along vertical symmetry plane for a0=0.

a pressure-driven secondary motion convects the fast moving fluid towards the inner wall with
an inclination to the rotational direction, causing a substantial deformation of the streamwise
velocity contours. As the fluid flows through the square-sectioned straight duct, the Coriolis
force is primarily responsible for the generation of the secondary flow. However, due to the
effect of the first bend, the secondary flow asymmetric with two large dominant vortices
generates upstream of the straight duct (Figure 3(b)). It evolves into an asymmetric multieddy
structure dominated by a large vortex with a gradual reduction of the strength downstream of
the straight duct, as can be seen from Figure 3(c)–(e). As a result of the secondary motion, the
streamwise velocity contours are seen to be further deformed with the displacement of the fast
moving fluid from the corner of top and suction sides (Figure 3(b)) toward the corner of
bottom and suction sides (Figure 3(c)–(e)). Such a flow pattern is completely different from
that predicted for the sole rotating square sectioned duct, where the secondary flows develop
a structure with one or two pair of symmetric eddies, depending on the Rossby number; while
the fast moving fluid symmetrically occupies the pressure side [8]. This indicates the significant
effect of the inlet condition on the developing flow. As the fluid flows through the second
bend, it presents a similar effect on the secondary and streamwise velocities to the first bend
as can be noted from Figure 3(f).

In Figure 4, the predicted streamwise wall pressure coefficient Cp= (p−pref)/r(VR3)2 (pref is
the average pressure at the cross-section of R/R3=0.16) along the vertical symmetry plane is
presented. Along the upstream circular pipe, pressure presents a linear reduction. At the two
bends, the outer wall pressure is greater than the inner wall pressure, confirming the influence
of curvature. As the fluid flows through the square-sectioned duct, the centrifugal force arising
from the rotation leads to an accelerated pressure rise along the top and bottom surfaces.

Figure 5 presents a comparison of the predicted pressure coefficient Cp with the experimen-
tal data by Minemura et al. [6] along the pressure and suction surfaces at the horizontal center
plane of the square-sectioned duct. The prediction agrees well with the data, except that the
measuring location near the inlet of the straight duct. The severe drop in pressure near the inlet
of the straight duct in the measurement is attributable to hydraulic losses through the complex

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 811–826 (1999)
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Figure 5. Comparison of predicted and measured pressures along walls of horizontal center plane for a0=0.

transition section [6], connecting the bend to the square-sectioned duct, which fails to be
exactly represented in the present calculation.

5. RESULTS OF GAS–LIQUID TWO-PHASE FLOW

In Figure 6, the predicted void fraction contours at the projective horizontal center plane are
compared with the experimental data by Minemura et al. [6]. The prediction shows fair
agreement with the data within the whole flow passage. In particular, it reasonably reproduces
the accumulation of gas bubbles near the inlet of the straight duct. Such an accumulation had
not been captured by the authors previous numerical computations conducted for the sole
square-sectioned duct without inclusion of the two bends in the computational domain [8,9].

Figure 6. Comparison of predicted and measured void fractions at horizontal center plane.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 811–826 (1999)
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Figure 7. Predicted void fraction contours at different cross-sections.

On the other hand, the previous computations also considerably overpredicted the void
fractions over most of the flow passage. This suggests again that the inlet condition has a
substantial effect on the void fraction distributions for the developing turbulent two-phase
flows.

The predicted void fraction contours at different cross-sections of the duct are displayed in
Figure 7. Within the whole flow passage of the duct, the void fractions are seen to present a
remarkably non-uniform distribution. At the cross-section of u1=60° shown in Figure 7(a), a
predominant zone of higher void fractions appears near the inner wall and along the left side
wall due to the effects of lateral pressure gradient and the secondary motion. As the bubbles
enter the square-sectioned duct, the lateral pressure gradient produced by the Coriolis force
drives the gas bubbles to migrate towards the suction side of the duct, and the gravitational
buoyancy causes the bubbles to move towards top side of the duct. Consequently, a large
number of bubbles accumulate near the corner of the suction and top sides, forming a
predominant zone of higher void fractions there, and leaving very few bubbles along the whole
pressure and bottom sides, as can be seen from Figure 7(b)–(e). At the station of u2=18°
shown in Figure 7(f), the predominant zone of higher void fractions occupies the inner wall
due to the influence of curvature and the secondary motion.

The predicted secondary velocity vectors and the corresponding streamwise velocity con-
tours for liquid-phase at different cross-sections are illustrated in Figure 8. The secondary flow
presents similar patterns to those of single-phase flow, but with some differences of the
strength and positions of the vortices, as can be seen from Figure 8(a)–(d). From the inlet
region (R/R3=0.16) to the middle (R/R3=0.5) of the straight duct, the predicted liquid-phase
streamwise velocities display similar distributions to those of single-phase flow, but with a

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 811–826 (1999)
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lower maximum value and slight shift of the maximum velocities to the pressure and bottom
sides, as shown in Figure 8(a)–(c). Downstream to the outlet of the duct, however, the
streamwise velocity contours are different from their counterparts in single-phase flow. The
maximum streamwise velocity is further displaced to the pressure side as can be noted from
Figure 8(d). As already predicted in previous studies [8,9], it is interesting to note again that
a small recirculation zone appears at the corner of top and suction sides and extends
downstream of the straight duct, due to the predominant zone of higher void fractions there
and the effects of the adverse pressure gradient created by the centrifugal force.

Figure 9 shows the comparison of the predicted turbulence kinetic energy between the
single-phase (left) and two-phase flows (right). In the upstream region of the duct, the
maximum kinetic energy in two-phase flow is much smaller than that predicted in single-phase
flow, as can be seen from Figure 9(a) and (b). Downstream to the outlet of the straight duct,
however, the predictions present a reverse, i.e. the maximum kinetic energy in two-phase flow
is much greater than its counterpart in single-phase flow, as can be observed from Figure 9(c)
and (d). It is interesting to note that the maximum kinetic energy in two-phase flow tends to
occupy the region where a predominant zone of higher void fractions exists.

The streamwise wall pressure coefficient Cp along the vertical symmetry plane is predicted
for the two-phase flow as shown in Figure 10. In comparison with the single-phase flow
(Figure 4), the outer wall pressure is seen to drop severely at the first bend and to increase
slightly at the second bend, due to the effect of the gravitational buoyancy. The bottom wall
pressure is larger than the top wall pressure along the square-sectioned duct for the same effect
of the gravitational buoyancy.

Figure 8. Predicted secondary flow velocity and streamwise velocity contours for liquid-phase at different cross-sec-
tions for a0=0.032.
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J.-C. WU AND K. MINEMURA824

Figure 9. Comparison of predicted turbulence kinetic energy between single-phase and two-phase flows.

The predicted pressure coefficient Cp along the pressure and suction surfaces at the
horizontal center plane is compared with the experimental date [6] in Figure 11. The prediction
shows good agreement with the data, except the first pair of measuring points near the inlet
of the straight duct for the early discussed reasons.

Figure 10. Streamwise wall pressures along vertical symmetry plane for a0=0.032.
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Figure 11. Comparison of predicted and measured pressures along walls of horizontal center plane for a0=0.032.

6. CONCLUSIONS

A fully three-dimensional approach, based on the two-fluid model in a general curvilinear
co-ordinate system, has been presented and applied to the developing turbulent bubbly
two-phase flow in a rotating complicated duct. The main findings of the present study are
summarized as follows:

(1) For the single-phase flow, the predictions indicate that the secondary flows are evolved
from two large asymmetric dominant vortices into an asymmetric multieddy structure,
dominated by a large vortex with a gradual reduction of the strength downstream of the
square-sectioned duct. The streamwise velocity contours are strongly deformed by the sec-
ondary motion with the displacement of the fast moving fluid towards the corner of bottom
and suction sides downstream of the square-sectioned duct.

(2) For the two-phase flow, the predicted void fractions at the horizontal centerplane of the
square-sectioned duct show satisfactory agreement with the measurements.

(3) Owing to the effects of rotation, gravity and curvature of the bends, the void fraction
distributions present a remarkable non-uniformity within the duct, with the predominant zone
of higher void fractions appearing near the top and suction walls of the square-sectioned duct
and occupying the inner walls of the two bends.

(4) The predicted pressures agree well with the experimental data for both of the single- and
two-phase flows.
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